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resistance to the blood flow. If the increase in pressure and the degree of vessel diameter reduction are balanced, the net 
blood flow will remain stable. This CA mechanism is known as cerebrovascular or pressure reactivity. Contrarily, if CA 
is impaired, an increase in pressure will lead to an increase in blood flow; a decrease will cause a reduction and lead to 
deleterious effects. Because CA is known to be impaired during diseases like diabetes3, Parkinson’s disease4, stroke5, 
traumatic brain injuries (TBI)6, hydrocephalus7, and others, methods for quantification are needed. 

One way to quantify CA is to determine the limits of autoregulation and see if CPP is located on the regulated plateau 
part. To reconstruct Lassen’s curve (Figure 1) CBF and CPP have to be measured. ICP and ABP can be measured 
directly via pressure sensors placed in the brain’s ventricle and an A-line respectively. Since ICP sensors cannot be 
placed in many patients, Lassen’s curve has also been reported using ABP alone. However, this is questionable when 
vascular reactivity is impaired. In contrast, cerebral blood flow is mostly indirectly measured. The currently most 
common method is transcranial Doppler sonography8,9. It measures the cerebral blood flow velocity (CBFv) based on the 
movement of red blood cells. While it is non-invasive and has a high temporal resolution, it is only sensitive to large 
blood vessels, such as the middle cerebral artery. Therefore, a global autoregulation impairment state is captured, which 
is insensitive to local impairment. Transcranial Doppler sonography only captures the velocity of blood flow but cannot 
quantify the flow rate since the vessel diameter information is not available. In fact, the vessel diameter is assumed to be 
constant during these measurements2, which disagrees with the theory of vascular reactivity.  

Lassen’s blood flow autoregulation curve has previously been derived from NIRS measured changes in tissue oxygen 
saturation (StO2)10, where StO2 was used as a surrogate for CBF. NIRS combines attractive features like non-
invasiveness, high temporal resolution, sensitivity to microvasculature and localized measurements, making it suitable 
for low risk bedside monitoring. While StO2 is influenced by CBF changes10, it is also dominated by cerebral blood 
volume (CBV). In order to decouple CBF and CBV influences in NIRS data, oxy- (HbO2) and deoxy- (Hb) hemoglobin 
concentration changes need to be measured and interpreted by hemodynamic modeling11–13. In order to address the need 
for disentangling CBF and CBV, we performed experiments on non-human primates during exsanguination. We will 
demonstrate that Lassen’s curve and the lower limit of autoregulation can reliably be measured by NIRS.    

2. METHODS 
To understand the interplay between ICP, ABP, CPP and hemoglobin concentrations, an acute study on non-human 
primates (macaca mulatta, n=2) was performed. All experiments and procedures were approved by the University of 
Pittsburgh Institutional Animal Care and Use Committee (protocol ISO0005947). Animals were anesthetized on gas 
(1.5% isoflurane) during the experiment and ventilated by a respirator at 8 breaths/min. Body core temperature was held 
between 35 and 36 degrees Celsius. ABP was measured through an arterial line (A-line) in the external carotid artery by 
an ABP sensor (MPR 1 Datalogger, Raumedic, Germany). ICP was measured through a pressure sensor 
(NEUROVENT-P, Raumedic, Germany) in the ventricles. Both ABP and ICP data was collected with 100Hz sampling 
frequency. In addition, SpO2 (peripheral arterial oxygen saturation measured with pulse oximetry on the monkey’s foot), 
heart and respiration rate, etCO2 (CO2 at the end of exhaling) as well as core temperature were measured with a sampling 
frequency of 1Hz.  

Cerebral hemoglobin concentrations were measured with a multi-distance, frequency domain NIRS system (OxiplexTS, 
ISS Inc., Champaign, IL, USA). The OxiplexTS system illuminates at two wavelengths (690nm and 830nm) of light. 
Data is recorded for four different source-detector distances, d = 0.75cm to 2cm, which allows the calculation of absolute 
concentration of HbO2 and Hb in local brain tissue using a multi-distance approach14,15 . Sampling frequency of the 
NIRS system was 5Hz. The NIRS probe was placed directly on the skull to avoid signal contamination from skin and 
muscle tissue. The probe was placed on the left hemisphere, approximately between frontal and parietal region. From the 
calculated Hb and HbO2 values the total hemoglobin concentration (HbT = Hb + HbO2) and the tissue oxygen saturation 
(StO2 = HbO2 /HbT) were derived.  

Exsanguination was performed to drain blood and thereby reduce ABP. Anesthesia via isoflurane was maintained 
throughout the procedure. At the time of exsanguination, the animals had been anesthetized for 9 hours, during which 
changes in ICP were induced (data not shown). At the time of exsanguination, ICP had been returned to normal levels. 
Exsanguination was started after infusion of 5ml heparin to stop blood coagulation. Drainage was performed through the 
A-line and was stopped intermittently to measure periods of ABP.  

To compare pressure measurements and NIRS data, the data sampling frequency was equalized by down sampling the 
ABP and ICP to 5Hz. Down sampling was done by reading only every 20th data point. Since Lassen’s autoregulation 
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NIRS measurements are given as black lines in horizontal and vertical direction, respectively. The figure reveals a 
distinct shape similar to the first half of Lassen’s blood flow autoregulation curve (compare to Figure 1). The lower limit 
of autoregulation (LLA) is shown by the dotted line. While StO2, HbO2 and HbT show the same general trend as seen in 
Figure 1, Hb increases with decreasing CPP. The data shown for animal 1 revealed a LLA of 65mmHg, animal 2 shows 
a LLA of 33mmHg. 

We further calculated the slope of hemodynamic changes in Lassen’s curves below the lower level of autoregulation. 
The difference in slopes for the not regulated part below the LLA is given in Table 1. Since HbT changes are directly 
related to CBV changes13, the slope of 0.34 μM / mmHg corresponds to blood volume changes. On the other hand, 
HbO2, which is influenced by CBF and CBV, increases twice as fast as HbT.   

 

Table 1: The slopes of Lassen's curves presented in Figure 2B for values below LLA 

Variable Slope 

StO2 0.52 [% / mmHg] 

HbO2 0.7 [µM / mmHg] 

Hb -0.35 [µM / mmHg] 

HbT 0.34 [µM / mmHg] 

 

4. DISCUSSION AND CONCLUSION 
As shown in the results, reconstructing Lassen’s blood flow autoregulation curve based on NIRS could be achieved. This 
leads to the conclusion that hemodynamic changes measured with NIRS is an alternative to blood flow measurements 
with other devices such as transcranial Doppler in order to quantify the limits of cerebral autoregulation. 

The MAP level before exsanguination shown in Figure 2AFigure 1 lies at 80 mmHg and has to be considered 
hypertensive for non-human primates. A possible explanation for this might be chronic hypertension in MAP over 
previous years in the shown animal. ICP at 10mmHg represents a normal value for macaque and was artificially set. The 
resulting CPP before exsanguination is therefore elevated compared to animals with normal MAP. A relatively high 
amount of total hemoglobin concentration was also observed, with baseline HbT being 104µM. Despite the high amount 
of HbT, the distribution of Hb and HbO2 can be considered normal, shown by a StO2 value of 65%. The second animal 
in this study (data not shown) had no known diseases and a normal MAP at 50mmHg, which results in a CPP of 40 
mmHg before exsanguination.  

Lassen’s curve characteristics were reconstructed with all four available hemoglobin measurements as shown in Figure 
2B. During arterial blood drainage HbO2 and HbT concentration, as well as StO2, decreased as expected, while Hb 
increased. The same trend was found in the second animal (data not shown). Changes in HbO2 are large compared to 
changes in Hb. This can also be observed by the slope of hemoglobin concentration over the same CPP range, which is 
significantly different between HbO2 and Hb, as can be seen in Table 1. StO2 and HbT are therefore not largely affected 
by increasing Hb. The other hemodynamic values StO2, HbT and HbO2 show characteristics of the left side of Lassen’s 
blood flow autoregulation curve.  

A reason for the observed trend differences in Hb and HbO2 might be given by the MAP reduction by blood drainage. 
The effects seen are likely caused by two different effects. The first is related to blood flow changes due to reduced 
MAP, the second part is a blood volume reduction primarily in the arteries that is not yet taken into account. In order to 
interpret the results in terms of Lassen’s blood flow autoregulation curve, hemodynamic changes would need to be 
translated to CBF changes. A possible solution is the hemodynamic model introduced by Fantini et al.11–13, which 
separates concentration changes in hemoglobin into blood flow velocity, blood volume and oxygen consumption related 
changes.   

The ability of StO2 to function as a surrogate for blood flow was previously mentioned by Brady et al.10, who reported 
the reconstruction of Lassen’s blood flow autoregulation curve. In their study, a NIRS system was used to observe StO2 
on the frontal cortex during blood pressure hypotension induced in piglets. The hypotension was caused by slowly 
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inflating a balloon catheter in the inferior vena cava. StO2 was then plotted over CPP to reconstruct Lassen’s curve. 
However, the reconstruction was described as not well characterized, especially at the deflection points of LLA and 
ULA. Considering our results, the influence of blood volume changes by blocking the inferior vena cava might also have 
influenced the reliability of StO2 as a surrogate for blood flow and the use of a hemodynamic modelling approach to 
disentangle volume and flow rate might benefit the outcome.  

A modeling approach can address the ambiguity between CBF and CBV influence on NIRS data, which we will achieve 
with a modeling approach such as 11–13. Separating blood volume and flow will allow for a more reliable NIRS based 
reconstruction of Lassen’s curve and hence a better quantification of CA. In addition, the establishment of NIRS as a 
tool to monitor CA can be achieved.  
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